Solvent Cement Welded Joints

Spears® Manufacturing Company recommends following solvent cement manufacturer’s recommendations and reading ASTM D 2855, “Standard Practice for Making Solvent-Cemented Joints with Poly Vinyl Chloride (PVC) Pipe and Fittings”. This method of joining valves and piping system components is very simple and reliable if procedures are followed correctly. Since variables of temperature, humidity, pipe size, time, and other conditions have a significant effect on solvent cement joints, it is important to understand the principles of each step and make adjustments for actual conditions. Shortcuts or excessive deviations may result in joint failures and/or frozen valve movements.

Safety Precautions

WARNING: Solvent cements and primers for pipe, fittings and valves are flammable. Extinguish all smoking materials, flames, or other ignition sources in working or storage areas. Be sure to work only in a well-ventilated space. Avoid eye and unnecessary skin contact with all cements, primers or solvents. Ingestion or intentional inhalation of solvent vapors can be harmful or fatal. Additional safety precautions may apply, consult solvent cement manufacturer.

Selection of Solvent Cement

A wide variety of solvent cements and primers are commercially available. Selection of specific type, grade and consistency of solvent cement should take into account pipe type, size, installation conditions and chemical compatibility of cement and system fluids. Contact solvent cement manufacturer for additional information.

Required Materials

- Saw & miter box or wheel-type cutter
- Pipe deburring & beveling tool or mill file
- Solvent Cement — PVC cement for PVC materials, CPVC cement for CPVC materials; heavy bodied, as manufactured by Spears® Manufacturing Company
- Primer — as manufactured by Spears® Manufacturing Company
- Brush or dauber type cement and primer applicators — select a size no less than 1/2 the pipe diameter (see chart below).
- Use containers — sealable metal or glass to hold cements and primers
- Cotton cleaning rags
- Cleanup solvents — such as tetrahydrofuran (THF) or methylethylketone (MEK)

Recommended Applicator Size for Solvent Cement and Primer

<table>
<thead>
<tr>
<th>Applicator Type & Size (in.)</th>
<th>Nominal Pipe Size (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brush*</td>
<td>1/2</td>
</tr>
<tr>
<td>Dauber</td>
<td>3/4 1 1-1/4 1-1/2 2 2-1/2 3 4 5</td>
</tr>
<tr>
<td>Roller</td>
<td>Not Recommended</td>
</tr>
</tbody>
</table>

General Procedure Outline

General Preparation

For best results, installation should be made at temperatures between 40°F and 110°F.

All joint components should be inspected for any breaking, chipping, gouging or other visible damage before proceeding. All pipe and fittings should be removed from their packaging or containers and exposed to the installation environment for a minimum of one hour in order to thermally balance all components.

On True Union Ball, Check and Diaphragm valves, remove union nuts and end connectors before priming and cementing connections. With the threads facing the valve, slide the union nut over the pipe to which the end connector socket is to be cemented. Reinstall the valve body and union nuts only after the joint has fully cured.

On valves with fixed socket connections in the body, be sure the valve is in the open position to aid in evaporation of solvent vapors which can attack internal components. **TAKE EXTRA CARE THAT NO PRIMER OR SOLVENT CEMENT IS ALLOWED TO COME IN CONTACT WITH THE BALL OR OTHER INTERNAL VALVE COMPONENTS.**

Step 1: Cut Pipe Square

Pipe ends must be cut square, using a wheel-type cutter or saw & miter box. A fine-toothed hand saw (16-18 teeth / inch) with little or no set is recommended. A power cutoff saw with carbide blade is recommended for high volume cutting.

Step 2: Deburr & Bevel Pipe

Regardless of cutting method used in step 1, burrs are created which must be removed from both the pipe I.D. and O.D. before joining. All pipe ends should be beveled 10° to 15°. Commercially available deburring & beveling tool is recommended, or a mill file may be used.

Step 3: Clean Joint Components

Wipe away all loose dirt and moisture from the pipe O.D. and fitting I.D. with a clean, dry cotton rag. **DO NOT ATTEMPT TO JOIN WET SURFACES.**

Step 4: Check Joint Interference Fit

An interference between pipe and fitting socket is necessary for proper fusion of the joint. To check, lightly insert pipe into fitting socket. **DO NOT FORCE.** Interference between pipe and fitting should occur between 1/3 to 2/3 of the socket depth (full interference fit) and the socket bottom (net fit). Do not use components which improperly mate.
Step 5: Apply Primer
Primer is necessary to penetrate and soften both pipe and fitting socket surfaces in order for the solvent cement to properly bond. **THE MOST FREQUENT CAUSE OF JOINT FAILURES IS INADEQUATE SOLVENT PENETRATION AND SOFTENING OF BONDING SURFACES DURING THE WELDING OPERATION.**

1. Using a brush or applicator size no less than 1/2 the pipe diameter, apply a liberal coat of primer with a scrubbing motion to the fitting socket until the surface is softened and semi-fluid. This may take 5 to 15 seconds depending on size and temperature (larger diameters and lower temperatures will increase required time).

2. Apply primer to pipe in the same manner, extending application area to slightly more than the insertion depth into the fitting socket.

3. Apply a second coat to both the fitting socket and the pipe.

4. Check penetration and softening by scraping the primed surfaces. A few thousandths of the semi-fluid surface should be easily removed. Repeat primer application if necessary.

Step 6: Apply Solvent Cement
Solvent cement must be applied **IMMEDIATELY** to primed surfaces before the primer dries in an alternating 3-coat application. Using a brush or applicator size no less than 1/2 the pipe diameter, apply a liberal coat of solvent cement to the primed pipe surface, then apply a light to medium coat to the primed fitting socket. If a "net fit" was experienced during dry fit check (Step 4), apply an additional coat again to the pipe surface. **BE SURE TO USE A VERY LIBERAL AMOUNT OF SOLVENT CEMENT ON PIPE.**

VALVE INSTALLATION CAUTION: TAKE EXTRA CARE THAT NO PRIMER OR SOLVENT CEMENT IS ALLOWED TO CONTACT THE BALL OR OTHER INTERNAL VALVE COMPONENTS.

Step 7: Join Components
IMMEDIATELY following application of cement and before it starts to set, insert the pipe into the fitting socket with a one-quarter turn, twisting motion to evenly distribute cement within the joint. A full bead of cement should form around the circumference of the joint. Hold joint together for approximately 30 seconds to make sure the pipe does not move or back out of the socket.

CAUTION: ABSENCE OF BEAD FORMATION, VOIDS, OR GAPS IN THE BEAD ARE A SIGN OF INSUFFICIENT CEMENT APPLICATION. IF SUCH IS OBSERVED, IMMEDIATELY PULL THE JOINT APART AND REAPPLY AN ADEQUATE AMOUNT OF CEMENT.

Step 8: Remove Excess Cement
Using a cloth, wipe clean all excess cement from the exterior juncture of the pipe and fitting.

Step 9: Initial Set Time
The joint must not be handled or moved for a minimum of 2 minutes, after which the joint must be handled carefully until the cement has gone through a set period. Recommended minimum set time:

- **Temperature 60° - 100°F:**
 - 1 hour minimum at 60° to 100°F (15° to 40°C)
 - 1 hour minimum at 40° to 60°F (5° to 15°C)
 - 2 hours minimum at 20° to 40°F (-5° to 5°C)
 - 4 hours minimum at 0° to 20°F (-20° to -5°C)

NOTE: Extreme caution should be used when solvent cementing joints at temperatures below 10°F, and many variables exist at temperatures below 20°F. Relative humidity greater than 50% will increase required cure times specified. Consult solvent cement manufacturer for additional information.

Joint Cure Schedule

<table>
<thead>
<tr>
<th>Temperature</th>
<th>60° - 100°F</th>
<th>40° - 60°F</th>
<th>20° - 40°F</th>
<th>10° - 20°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal Pipe Size (in.)</td>
<td>Test Pressure (psi)</td>
<td>Test Pressure (psi)</td>
<td>Test Pressure (psi)</td>
<td>Test Pressure (psi)</td>
</tr>
<tr>
<td>0-180</td>
<td>181-315</td>
<td>0-180</td>
<td>181-315</td>
<td>0-180</td>
</tr>
<tr>
<td>1/2 to 1-1/4</td>
<td>1 hour</td>
<td>6 hours</td>
<td>2 hours</td>
<td>12 hours</td>
</tr>
<tr>
<td>1-1/2 to 3</td>
<td>2 hours</td>
<td>12 hours</td>
<td>4 hours</td>
<td>24 hours</td>
</tr>
<tr>
<td>3-1/2 to 5</td>
<td>6 hours</td>
<td>18 hours</td>
<td>12 hours</td>
<td>36 hours</td>
</tr>
<tr>
<td>6 to 8</td>
<td>8 hours</td>
<td>24 hours</td>
<td>16 hours</td>
<td>48 hours</td>
</tr>
</tbody>
</table>

NOTE: Extreme caution should be used when solvent cementing joints at temperatures below 10°F, and many variables exist at temperatures below 20°F. Relative humidity greater than 50% will increase required cure times specified. Consult solvent cement manufacturer for additional information.