INDUSTRY PIPING FORMULAS

Pressure Rating

\[P = \frac{2St}{D-t} \]

\[S = \frac{P(D-t)}{2t} \]

P is the pressure rating in psi.

S is the Hydrostatic Design Basis (usually 4000 psi) divided by the safety factor (which is 2 for the three standards).

DR is the Dimension Ratio for D2241 and C905 but is OD/t for D1785

Where:

P = pressure, psi

S = circumferential stress, psi

D = outside diameter of pipe, inches

d = inside diameter of pipe, inches (average based on mean wall)

t = average wall thickness, inches

Volume capacity-gallons per ft. length = \(V_G = V \times 0.004329 \)

Volume capacity-cubic inches per ft. length = \(V = 0.7854 \times d^2 \times 12 \)

Outside pipe surface, sq. ft per ft. length = \(AO = \frac{D^2 \pi}{12} \)

Inside pipe surface, sq. ft. per ft. length = \(A_I = \frac{d \pi}{12} \)

Cross-sectional plastic area, sq. in. = \(A = \frac{(D^2 - d^2) \pi}{4} \)

Cross sectional flow area, sq. in. = \(A_F = \frac{d^2 \pi}{4} \)

Weight of PVC pipe, lb. per ft. length = \(W_{PVC} = 0.632 \times A \)

Weight of CPVC pipe, lb. per ft. length = \(W_{CPVC} = 0.705 \times A \)

Weight of water in pipe, lb. per ft. length = \(W_w = 0.433 \times A_F \)

Weight of water filled pipe, lb. per ft. length = \(W_{WPVC} = W_{CPVC} + W_w \)

Radius of gyration, inches = \(r_g = \sqrt{\frac{D^2 + d^2}{4}} \)

Moment of inertia, inches fourth = \(I = Ar_g^2 \times 0.0491 \times (D^4 - d^4) \)

Section modulus, inches cube = \(Z = \frac{2A}{D} = 0.0982 \times \frac{(D^4 - d^4)}{D} \)

Thermal Expansion and Contraction

\[\Delta L = 12 \gamma L (\Delta T) \]

Where:

\(\Delta L \) = expansion or contraction of pipe in inches

\(\gamma \) = Coefficient of thermal expansion

(see PVC or CPVC material Thermal properties)

L = Length of pipe run in feet

\(\Delta T \) = Temperature change °F (Maximum temperature – Temperature @ Installation or maximum system temperature – lowest system temperature, whichever is greater)
Friction Loss (Hazen-Williams equations)

\[f = 0.2083 \times \left(\frac{100}{C} \right)^{1.852} \times \frac{G^{1.852}}{d^{4.865}} \]

Where:

- \(f \) = friction head of feet of water per 100' for the specific pipe size and I.D.
- \(C \) = a constant for internal pipe roughness (=150 for thermoplastic pipe)
- \(G \) = flow rate of U.S. gallons per minute
- \(d \) = inside diameter of pipe in inches

Water Velocities

\[V = 0.3208 \times \frac{G}{A} \]

Where:

- \(V \) = velocity in feet per second
- \(G \) = gallons per minute
- \(A \) = inside cross sectional area in square inches

Gallons Per Minute Through Pipe

\[\text{GPM} = 0.0408 \times \text{Pipe Diameter In} \times \text{Pipe Diameter \ } \times \text{Feet Per Minute Velocity} \]

Pressure Drop in Valves

\[P = \frac{G^2 \times S_g}{C_v^2} \]

Where:

- \(P \) = Pressure drop in PSI; feet of water = PSI/.4332
- \(G \) = Gallons per minute
- \(S_g \) = Specific gravity of liquid
- \(C_v \) = Gallons per minute per 1 PSI pressure drop (see Valve product Cv from manufacturer)

Water Conversions

- 1 foot of head = 0.434 PSI
- 1 gallon = 231 cubic inch = 8.333 pounds
- 1 pound water = 27.7 cubic inches

1 cubic foot water = 7.5 gallon = 62.5 pounds (salt water = 64.3 pounds)
1 miner’s inch = 9 to 12 gallons per minute

\[\text{Horsepower to Raise Water} = \frac{\text{Gallons Per Minute} \times \text{Total Head in Feet}}{3960} \]