

Pressure Rating

 $P = \frac{2St}{D-t} \qquad S = P(\underline{D-t})$

P is the pressure rating in psi.

S is the Hydrostatic Design Basis (usually 4000 psi) divided by the safety factor (which is 2 for the three standards). DR is the Dimension Ratio for D2241 and C905 but is OD/t for D1785

Where:

P = pressure, psi

S = circumferential stress, psi

D = outside diameter of pipe, inches

d = inside diameter of pipe, inches (average based on mean wall)

t = average wall thickness, inches

Volume capacity-gallons per ft. length = $VG = V \times 0.004329$

Volume capacity-cubic inches per ft. length = $V = 0.7854 \text{ x } d^2 \text{ x} 12$

Outside pipe surface, sq. ft per ft. length = AO =
$$\frac{D^2 \pi}{12}$$

Inside pipe surface, sq. ft. per ft. length = $A_1 = \frac{d \pi}{12}$

Cross-sectional plastic area, sq. in. = $A = (D^2 - d^2) \pi$

Cross sectional flow area, sq. in. = $A_F = \frac{d^2 \pi}{4}$

Weight of PVC pipe, lb. per ft. length = W_{PVC} = .632 x A

Weight of CPVC pipe, lb. per ft. length = W_{CPVC} = .705 x A

Weight of water in pipe, lb. per ft. length = $W_w = 0.433 A_F$

Weight of water filled pipe, lb. per ft. length = $W_{WFP} = W_{PVC}$ (or W_{CPVC}) + W_{W}

Radius of gyration, inches =
$$r_g = \sqrt{\frac{D^2 + d^2}{4}}$$

Moment of inertia, inches fourth = I = Ar_g² .0491 (D⁴ – d⁴) Section modulus, inches cube = Z = $\frac{2}{D}$ / = 0.0982 x ($\frac{D^4 - d^4}{D}$)

Thermal Expansion and Contraction

 $\Delta L = 12 \text{ yL} (\Delta T)$ *Where:* $\Delta L = \text{expansion or contraction of pipe in inches}$ y = Coefficient of thermal expansion

- (see PVC or CPVC material Thermal properties)
- L = Length of pipe run in feet
- Δ T = Temperature change °F (Maximum temperature Temperature @ Installation or maximum system temperature lowest system temperature, whichever is greater)

Friction Loss (Hazen-Williams equations)

 $f = .2083 \ x \ (100/C)^{1.852} \ x \ \frac{G^{.1.852}}{d^{.4.8655}}$

Where:

f = friction head of feet of water per 100' for the specific pipe size and I.D. C = a constant for internal pipe roughness (=150 for thermoplastic pipe) G = flow rate of U.S. gallons per minute d = inside diameter of pipe in inches

Water Velocities

 $V = .3208 \text{ x } \frac{\text{G}}{\text{A}}$ Where: V = velocity in feet per second G = gallons per minute A = inside cross sectional area in square inches

Gallons Per Minute Through Pipe

GPM = 0.0408 x Pipe Diameter Inches2 x Feet Per Minute Velocity

Pressure Drop in Valves

 $P = \frac{G^2 \times S_g}{CV^2}$ Where: P = Pressure drop in PSI; feet of water = PSI/.4332 G = Gallons per minute Sg = Specific gravity of liquid C_v = Gallons per minute per 1 PSI pressure drop (see Valve product Cv from manufacturer)

Water Conversions

1 foot of head = 0.434 PSI 1 gallon = 231 cubic inch = 8.333 pounds 1 pound water = 27.7 cubic inches 1 cubic foot water = 7.5 gallon = 62.5 pounds (salt water = 64.3 pounds) 1 miner's inch = 9 to 12 gallons per minute

Horsepower to Raise Water = Gallons Per Minute x Total Head in Feet

3960