Pressure Rating
$\mathrm{P}=\frac{2 \mathrm{St}}{\mathrm{D}-\mathrm{t}} \quad \mathrm{S}=\mathrm{P} \frac{(\mathrm{D}-\mathrm{t})}{2 \mathrm{t}}$
P is the pressure rating in psi.
S is the Hydrostatic Design Basis (usually 4000 psi) divided by the safety factor (which is 2 for the three standards).
DR is the Dimension Ratio for D2241 and C905 but is OD/t for D1785
Where:
$\mathrm{P}=$ pressure, psi
$\mathrm{S}=$ circumferential stress, psi
$\mathrm{D}=$ outside diameter of pipe, inches
$\mathrm{d}=$ inside diameter of pipe, inches (average based on mean wall)
$t=$ average wall thickness, inches
Volume capacity-gallons per ft. length $=\mathrm{VG}=\mathrm{V} \times 0.004329$
Volume capacity-cubic inches per ft . length $=\mathrm{V}=0.7854 \mathrm{x} \mathrm{d}^{2} \mathrm{x} 12$
Outside pipe surface, sq. ft per ft . length $=\mathrm{AO}=\frac{\mathrm{D}^{2} \pi}{12}$
Inside pipe surface, sq. ft. per ft. length $=\mathrm{A}_{\mathrm{t}}=\frac{\mathrm{d} \pi}{12}$
Cross-sectional plastic area, sq. in. $=A=\frac{\left(D^{2}-\mathrm{d}^{2}\right) \pi}{4}$
Cross sectional flow area, sq. in. $=A_{F}=\frac{d^{2} \pi}{4}$
Weight of PVC pipe, lb . per ft. length $=\mathrm{W}_{\text {PvC }}=.632 \times \mathrm{A}$
Weight of CPVC pipe, lb. per ft. length $=\mathrm{W}_{\mathrm{CPvC}}=.705 \times \mathrm{A}$
Weight of water in pipe, lb . per ft . length $=\mathrm{W}_{\mathrm{w}}=0.433 \mathrm{~A}_{\mathrm{F}}$
Weight of water filled pipe, $l \mathrm{~b}$. per ft. length $=\mathrm{W}_{\text {wFP }}=\mathrm{W}_{\text {PVC }}\left(\right.$ or $\left.\mathrm{W}_{\text {CPVC }}\right)+\mathrm{W}_{\mathrm{w}}$
Radius of gyration, inches $=r_{g} \equiv \sqrt{\frac{D^{2}+\mathrm{d}^{2}}{4}}$
Moment of inertia, inches fourth $=\mathrm{I}=\operatorname{Ar}_{\mathrm{g}}{ }^{2} .0491\left(\mathrm{D}^{4}-\mathrm{d}^{4}\right)$
Section modulus, inches cube $=Z=\frac{2_{1} /}{D}=0.0982 \times \frac{\left(D^{4}-d^{4}\right)}{D}$
Thermal Expansion and Contraction
$\Delta \mathrm{L}=12 \mathrm{yL}(\Delta \mathrm{T})$
Where:
$\Delta \mathrm{L}=$ expansion or contraction of pipe in inches
$y=$ Coefficient of thermal expansion
(see PVC or CPVC material Thermal properties)
$\mathrm{L}=$ Length of pipe run in feet
$\Delta \mathrm{T}=$ Temperature change ${ }^{\circ} \mathrm{F}$ (Maximum temperature - Temperature @ Installation or maximum system temperature - lowest system temperature, whichever is greater)

INDUSTRY PIPING FORMULAS

Friction Loss (Hazen-Williams equations)
$\mathrm{f}=.2083 \times(100 / \mathrm{C})^{1.852} \times \frac{\mathrm{G}^{1.852}}{\mathrm{~d}^{4.8655}}$
Where:
$\mathrm{f}=$ friction head of feet of water per 100^{\prime} for the specific pipe size and I.D.
C = a constant for internal pipe roughness ($=150$ for thermoplastic pipe)
$\mathrm{G}=$ flow rate of U.S. gallons per minute
$\mathrm{d}=$ inside diameter of pipe in inches
Water Velocities
$\mathrm{V}=.3208 \times \frac{\mathrm{G}}{\mathrm{A}}$
Where:
$\mathrm{V}=$ velocity in feet per second
$\mathrm{G}=$ gallons per minute
$\mathrm{A}=$ inside cross sectional area in square inches
Gallons Per Minute Through Pipe
GPM $=0.0408 \times$ Pipe Diameter Inches $2 \times$ Feet Per Minute Velocity
Pressure Drop in Valves

$$
\mathrm{P}=\frac{\mathrm{G}^{2} \times \mathrm{S}_{\mathrm{g}}}{\mathrm{CV}^{2}}
$$

Where:
$\mathrm{P}=$ Pressure drop in PSI; feet of water $=$ PSI/ .4332
$\mathrm{G}=$ Gallons per minute
$\mathrm{Sg}=$ Specific gravity of liquid
$\mathrm{C}_{\mathrm{V}}=$ Gallons per minute per 1 PSI pressure drop (see Valve product Cv from manufacturer)

Water Conversions

1 foot of head $=0.434$ PSI	1 cubic foot water $=7.5$ gallon $=62.5$
1 gallon $=231$ cubic inch $=8.333$ pounds	pounds $($ salt water $=64.3$ pounds $)$
1 pound water $=27.7$ cubic inches	1 miner's inch $=9$ to 12 gallons per minute

Horsepower to Raise Water $=\underline{\text { Gallons Per Minute } \mathrm{x} \text { Total Head in Feet }}$
3960

